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Tricritical behaviour in three dimensions is accessible to experiment in,
for example, 4He–3He mixtures and some polymeric assemblies. Here,
by largely heuristic arguments, which appeal however to some specific
model Hamiltonians, we indicate how one can understand the gist of the
experimental results near the tricritical point in the systems cited above.
We point out that the spin fluctuations at the tricritical point are much
weaker than those at the critical point, which leads to the conclusion that
the tricritical behaviours can be described well by the mean-field exponents
with logarithmic corrections, at d¼ 3.

Keywords: tricritical behaviour; tricritical exponents; 4He–3He mixtures;
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1. Experimental background and outline

In early experimental studies of 4He–3He mixtures, the superfluid transition, termed
the �-point, at 2.1K for pure 4He, was found to be lowered by the addition of 3He.
The result is a �-line, which goes back at least to Abraham et al. [1]. Some years later,
Walters and Fairbank [2] observed experimentally that below around 0.87K the
mixture separates into two coexisting liquid phases. We have redrawn in Figure 1
the results of Graf et al. [3]: the dashed line separates the normal fluid from the
superfluid and the intersection shown marks the tricritical point. Other well-studied
experimental systems exhibiting a tricritical point are some binary mixtures involving
liquid sulphur: e.g. benzene or triphenylmethane plus sulphur. For the latter mixture,
we have redrawn in Figure 2 the experimental phase diagram measured by Larkin
et al. [4]. This second class of mixtures chosen here is, at least partially, motivated
by the recent work in this Journal involving disordered sulphur by Angilella and
March [5], sulphur together with silicon representing two of the sparse number
of existing one – component glasses. Some further discussion of the structure factor
of liquid sulphur is given in the book by March and Tosi [6], rings and chains being
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featured there. We shall return to polymeric chains below, in discussing model
interpretations related to the phase diagram of the mixture shown in Figure 2.

The outline of this article then is as follows. Section 2 summarises some heuristic
considerations, beginning with models based on polymer chains, going back to
de Gennes [7]. Various theoretical treatments will be referred to, including some
controversial matters which seem now to be resolved through applications of the
renormalisation group and also field theoretical treatments of models. Section 3
contains first a short summary and then some proposals for future work which
should prove fruitful. In the appendix, reference is made to three model
Hamiltonians which already have had an impact on this area of tricriticality.

Figure 1. Phase diagram of 4He–3He liquid mixtures. This figure was redrawn according
to Figure 2 of Graf et al. [3]. The dashed line represents the onset of superfluidity, while the
solid line is for the phase separation and the intersection marks the tricritical point.

Figure 2. Phase diagram for the mixture of sulphur with triphenylmethane. This figure was
redrawn after Figure 8 of Larkin et al. [4].
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2. Heuristic treatments appropriate to the tricritical point

We shall begin by recalling in general terms what is set out in more detail in the
appendix. de Gennes [7] led the way in relation to tricritical behaviour involving
polymer chains (compare Figure 2) by exposing an analogy with magnetic systems.
This can be formalised into a d-dimensional Hamiltonian set out in Equation (A1),
which involves intimately an n-component continuous spin variable S� (x). This
work by de Gennes [7] was closely followed by the study of Stephen and
McCauley [8] who employed the Wilson classical spin model to determine the
tricritical exponents �, � and �, by expansion in 2 related to dimensionality by
d¼ 3�2. Their results read, for an n-component classical field:

� ¼
1

2
þ
1

2
2 þOð22Þ, ð1Þ

� ¼ 1þ
5

8

ðnþ 2Þðnþ 4Þ

ð3nþ 22Þ2
22 þOð23Þ, ð2Þ

and

� ¼
1

12

ðnþ 2Þðnþ 4Þ

ð3nþ 22Þ2
22 þOð23Þ: ð3Þ

A decade or so later, Duplantier [9] discussed tricritical polymer chains for d� 3.
There had been some early controversy (see e.g. [10]). In [9], the tricritical exponent �
is written as � ¼ 1

2þOð22Þ where d¼ 3�2. Duplantier adds the scaling relation
�¼ (2� �)�1� and then for 2¼ 0 corresponding to d¼ 3 concludes that �¼ 1/2, �¼ 0,
�¼ 1, the later two values agree with Equations (3) and (2) given above by Stephen
and McCauley when 2¼ 0. Hager [11] then performed 2-expansions of tricritical
exponents � and � up to 23. The conclusion seems clear: the Wilson renormalisation
group plus field theory treatments (e.g. [12–14]) are leading to the correct tricritical
exponents, with only logarithmic corrections to mean-field results for d¼ 3.

3. Summary and proposed directions for further study

We have focussed first on two experimentally determined phase diagrams concerned
with tricritical points. Figure 1 shows the case of 4He–3He mixtures, in which the
�-point of 4He is lowered by mixing with 3He. As a second example, we have chosen
a mixture involving sulphur, one of the reasons being the current interest in single –
component glasses: of which sulphur and silicon are two but a few presently known
disordered assemblies of this kind. Thus in Figure 2, we have selected the mixture
of sulphur with triphenylmethane. Section 2 then summarises some models which
have been proposed, especially related to Figure 2 in which polymeric chains are
anticipated, for tricritical exponents. After some early controversy, briefly referred
to in Section 2, the essence of Equations (2) and (3) for tricritical exponents, going
back at least to Stephen and McCauley [8] is confirmed. As to further directions,
refined treatments using density functional theory would seem of ongoing interest
for 4He–3He mixtures especially.

But, to conclude, it remains of considerable interest to give simple, first principles
explanations as to why, for critical exponents, the crossover dimension above which
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mean-field values become appropriate is at d¼ 4, whereas for the tricriticality
discussed in the present article, the mean-field exponents are already appropriate,
though now with logarithmic corrections, at d¼ 3. Note that for critical exponents
of an ordinary second-order transition, the recent theoretical work gives �¼ 0,
�¼ 3/8, � ¼ 5/4, �¼ 13/3, �¼ 1/8 and �¼ 2/3 for the 3D Ising model [15], whereas the
mean-field values are �¼ 0, �¼ 1/2, � ¼ 1, �¼ 3, �¼ 0 and �¼ 1/2. It has been
found that the tricriticality exists in various magnetic systems with diluted mixed
spins [16–19], four-spin interaction [20], strongly competing anisotropy [19,21–25]
and/or competing magnetic fields [26].

We try to understand this issue as follows: first, we inspect the mean-field theory
itself. The mean-field theory treats all the models the same, by dealing with every
spin, bond, etc. in an average manner and neglecting all spin fluctuations in the order
parameter in which nearby parts of the system, while remaining interrelated, do
something different from the average. Therefore, the mean-field theory can be valid
at the region, far from the critical point for d� 3, where fluctuations are weaker.
There is a characterised temperature region jtj ¼ jT�Tcj, within which the mean-
field theory loses its validity since there are strong fluctuations near the critical point.
It is estimated that the jtj is in order of 10�2 for magnetic systems, but about 10�10

for superconductivity. Thus the mean-field theory, such as Bardeen–Cooper–
Schrieffer (BCS) theory [27,28], works quite well for the critical behaviour of
superconductivity. For the tricriticality in the 4He–3He mixtures, the characterised
temperature region jtj should be much smaller than it is near the critical point. This is
the first reason why the mean-field theory works in the present topic for d¼ 3.
Secondly, the first-order phase separation and the onset of superfluidity of second
order are two phase transitions known to occur in liquid 4He–3He mixtures. At the
tricritical point, the mixture separates into two coexisting liquid phases so that
in principle, the system at this point possesses the characters of both the first-order
and the second-order phase transitions. The emerging of the first-order phase
transition would certainly suppress the spin fluctuations at the critical point of the
second-order phase transition. It was understood that the tricritical transition differs
from an ordinary second-order transition by the existence of an additional density
with critical fluctuations [29] and that the tricritical point can be characterised as the
simultaneous instability point of the system to two types of critical fluctuations [14].
Thirdly, in the systems with magnetic mixtures, the spin number of at least one of the
mixtures should be larger than 1/2. It is known that a system with higher spins would
behave more classically, which can be better described by the mean-field theory,
because high spins suppress the spin fluctuations (a similar analysis could be done
also for the effect of high anisotropy). From the analysis above, the spin fluctuations
at the tricritical point are much weaker than those at the critical point so that the
tricritical behaviours can be described well by the mean-field exponents with
logarithmic corrections, at d¼ 3.
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Appendix

Three Hamiltonians relevant to tricriticality

We summarise in this appendix three Hamiltonians that have proved valuable in
discussing tricritical points.

The first of these stemmed from an analogy between polymer chains, such as exist in the
sulphur mixture shown in Figure 2 of the main text, and magnetic systems, which was pointed
out by de Gennes [7]. This was employed in the study of Stephen [30] and that referred
to above [8], and forms a basis for treating critical and tricritical behaviour in d dimensions.
The effective Hamiltonian reads

H ¼

Z
ddx

r0
2

Xn
�¼1

S2
�ðxÞ þ

1

2

Xn
�¼1

rS�ðxÞ
�� ��2 þ u4

4!

Xn
�¼1

S2
�ðxÞ

 !2

þ
u6
6!

Xn
�¼1

S2
�ðxÞ

 !3

þ � � �

2
4

3
5: ðA1Þ

In the above Equation (A1), S� (x) is an n-component continuous spin variable. de Gennes
noted that as n!1 the Hamiltonian (A1) describes a self-avoiding random walk: a polymer
chain with excluded volume (see also [31]).

The second Hamiltonian of interest goes back at least to Blume–Emery–Griffiths
(BEG) [32]. The total Hamiltonian reads

H ¼ �J
XN
hi, j i

SiSj � K
X
hi, j i

S2
i S

2
j þ D

X
i

S2
i �NðzK33 þ 	3Þ: ðA2Þ

This has become of wider interest recently in the different context of negative specific heat
(see e.g. [33]). There, the BEG Hamiltonian was also utilised to compare the relation between
the magnetisation and internal energy of the itinerant systems Fe and Ni.

The final Hamiltonian referred to in this appendix is that proposed by Ashkin and Teller
[34] (see also [35]). It is shown in [35] that the four-component statistics model of Ashkin
and Teller is equivalent to a special case of a staggered eight-vertex model [36], while the
eight-vertex model is equivalent to an asymmetrical Ashkin–Teller model. This has been
utilised in the context of tricriticality by Riedel and Wegner [14] who also refer incidentally
to a generalisation of the BEG model in relation to the 4He–3He mixtures displayed in the
present Figure 1.
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